
1

Computer Science
Assessment Plan

2024

2

Contents

Program Mission Statement .. 3

Program Educational Objectives .. 3

Periodic Review and Revision .. 3

Student Outcomes ... 3

SOs Assessment Plan ... 4

Assessment methods ... 5

Assessment Schedule ... 5

Assessment Descriptions ... 6

Rubrics and Surveys ... 8

C++ Assessment Rubric .. 9

Java Assessment Rubric ...10

Database Assessment Rubric ...11

ADT and Runtime Analysis Assessment Rubric ..12

Oral Communication Assessment Rubric ...13

Written Communication Assessment Rubric ...14

Computer Ethics Assessment Rubric ...15

Senior Exit Survey ..16

Alumni Survey ..18

Advisory Board Survey ...20

3

Program Mission Statement

The Department of Mathematics, Computer Science, and Digital Forensics offers a Bachelor of Science degree in
computer science. The curriculum is broadly based in core areas of computer science, with an emphasis on the design,
analysis, and production of complex and reliable software. Graduates are prepared to advance in computing careers
and lead in technical endeavors or pursue an advanced degree in computer science.

Program Educational Objectives

PEOs are broad statements describing the career and professional accomplishments that the computer science
program prepares graduates to achieve.

Three to five years after graduation, our computer science alumni will:

1. be professionally employed in the computing field.

2. communicate and collaborate effectively in a team environment.

3. continue to grow professionally by adapting to new technologies and assuming leadership responsibilities.

Periodic Review and Revision

The Computer Science Curriculum Committee will review our mission statement and PEOs once every five years.
Input from constituents will inform each review. This input will be obtained from advisory board members and
alumni survey results.

Student Outcomes

We have ten SOs in six categories.

Category SO: Student will…

Software
Engineering

1. demonstrate strong programming skills in at least two object-oriented languages.

2. be able to write a significant application that efficiently utilizes a database for storage
and retrieval.

3. be knowledgeable about software design processes and methodologies.

Operating
Systems

4. have a strong understanding of operating system concepts.

Hardware 5. have a strong understanding of computer hardware concepts.

Problem
Solving

6. be able to determine what abstract data type (ADT) should be used to solve a problem
and what data structure would be used to efficiently implement an ADT.

7. be able to analyze the complexity of algorithms.

8. be able to solve programming problems.

Communication
9. demonstrate oral and written communication skills necessary to read, write, and speak
effectively about concepts in computing.

Ethics 10. understand ethical and legal issues involving digital technology.

4

SOs Assessment Plan

Success in achieving the SOs is assessed through the administration of direct and indirect measures including the
Major Field Test in Computer Science and various course embedded assessments. Indirect measures described
after the following table help to assess our SOs as well as PEOs and our curriculum.

SO: Student will… Direct assessment

1. Demonstrate strong programming skills in at
least two object-oriented languages.

Course embedded assessments in CMSC 230 (Advanced
Java) and CMSC 270 (Data Structures)

2. Be able to write a significant application that
efficiently utilizes a database for storage and
retrieval.

Course embedded assessment in CMSC 150 (Database
Design)

3. Be knowledgeable about software design
processes and methodologies.

ETS Major Field Test in Computer Science

4. Have a strong understanding of operating
system concepts.

ETS Major Field Test in Computer Science

5. Have a strong understanding of computer
hardware concepts.

ETS Major Field Test in Computer Science

6. Be able to determine what abstract data type
(ADT) should be used to solve a problem and
what data structure would be used to efficiently
implement an ADT.

Course embedded assessment in CMSC 370 (Algorithms)

7. Be able to analyze the complexity of
algorithms.

Course embedded assessment in CMSC 370 (Algorithms)

8. Be able to solve programming problems. Problem Solving Assessment

9. Demonstrate oral and written communication
skills necessary to read, write, and speak
effectively about concepts in computing.

Course embedded assessments in CMSC 345 with
presentation of final project and CMSC 480 with
capstone project report.

10. Understand ethical and legal issues involving
digital technology.

Course embedded assessment in CMSC 320. Students
conduct an ethical analysis of a specified scenario
involving the computing industry.

Indirect assessments: An exit survey of graduating seniors addresses all of our learning outcomes and allows us
to determine students’ perceptions of their education at the time of graduation. An alumni survey is sent to
students three to five years after graduation, which helps us determine how they have continued their
education and/or advanced in their careers. We also survey our advisory board members every three years for
their thoughts and suggestions concerning our curriculum, PEOs, and SLOs.

5

Assessment tools

Assessment Administered Frequency SLOs

Major Field Test CMSC 480 Every spring 1-8

C++ CMSC 270 Once every 5 years 1

Java CMSC 230 Once every 5 years 1

Database CMSC 150 Once every 5 years 2

ADT and Runtime Analysis CMSC 370 Once every 5 years 6-7

Problem Solving CMSC 380 Once every 5 years 8

Communication CMSC 345/480 Once every 5 years 9

Ethics CMSC 320 Once every 5 years 10

Senior Exit Survey Online Every spring 1-10

Alumni Survey Online 3-5 years after graduation 1-10 (and PEOs)

Advisory Board Survey Online Every 3-5 years 1-10 (and PEOs)

The Advisory Board Survey also solicits comments and suggestions about the CS curriculum in general.

Assessment Schedule

 S19 F19 S20 F20 S21 F21 S22 F22 S23 F23 S24 F24 S25

Review of mission statement ⚫

Review of PEOs and SLOs ⚫

Major Field Test ⚫ ⚫ ⚫ ⚫

C++ Assessment ⚫ ⚫

Java Assessment 

Database Assessment 

ADTs and Runtime Analysis ⚫

Problem Solving 

Oral Presentation ⚫

Written Assessment ⚫

Ethics Assessment 

Senior Exit Survey ⚫ ⚫ ⚫ ⚫

Alumni Survey 

Advisory Board Survey ⚫

⚫ = completed`
 = planned

6

Assessment Descriptions

1. Review of Mission Statement
2. Review of PEOs and SLOs

The Computer Science Curriculum Committee meets at least once every five years to review our mission
statement, PEOs, and SLOs, and to ensure that our curriculum remains aligned with these cornerstones.
These assessments are informed by opinions solicited from external authorities, namely alumni who have
advanced as software professionals, currently manage and hire developers, and/or entrepreneurs in the area
of software development.

3. Major Field Test in Computer Science (MFTCS).

This is our primary assessment tool. It is provided by ETS testing services (www.ets.org). This test is given to
our graduating seniors every spring semester. It is required of students in CMSC 480, our capstone software
engineering course. It allows us to compare our students to students at other universities and gives us a
valuable external measurement with objective scoring and norm-referenced data. The test covers a broad
spectrum of core computer science concepts and subject areas, providing objective criteria for assessing
most of our SLOs:

• Programming skills (SLO 1)

• Software design processes and methodologies (SLO 3)

• Operating systems (SLO 4)

• Hardware (SLO 5)

• Data structures and algorithms (SLOs 6-7)

• Problem solving (SLO 8)

4. C++ Assessment

This course-embedded assessment allows us to measure how well our students can design and implement
software solutions in C++. It is administered in CMSC 270 (Data Structures in C++). The results allow us to
assess SLO 1 (strong programming skills in at least two object-oriented languages) and SLO 8 (problem
solving).

5. Java Assessment

This course-embedded assessment allows us to measure how well our students can design and implement
software solutions in Java. It is administered in CMSC 230 (Advanced Java). The results allow us to assess SLO
1 (strong programming skills in at least two object-oriented languages) and SLO 8 (problem solving).

6. Database Assessment

This course-embedded assessment allows us to measure how well our students can design a database
schema, implement SQL code, create reports, and solve a problem using a relational database. Students
write code involving the use and/or creation of a database in two required courses, CMSC 150 (Database
Design) and CMSC 230 (Advanced Java), and sometimes in CMSC 480 (Software Engineering). This
assessment is administered in CMSC 150.

7

7. ADTs and Runtime Analysis

This assessment consists of selected questions from the final exam in CMSC 370 (Analysis of Algorithms). We
collect data for individual questions (how many students answered them correctly) and individual students
(how many questions they answered correctly).

8. Problem Solving

We refer to this assessment as a programming contest, not because the students are not competing against
each other, but because the structure and administration of the assessment tool is similar to that of many
high school and college programming contests. Students are given five programming problems of increasing
difficulty to solve individually in three hours. Partial credit may be awarded for course grading purposes, but
for assessment (which is transparent to the student) we consider each solution as correct or incorrect. We
interpret the average number of problems solved as a measure of our students’ abilities to solve
programming problems—in fact, a measure of general problem-solving ability.

This assessment is given in CMSC 380 (Operating Systems), but the problems are independent of the course
content. They are designed to require only general programming skills and do not rely on knowledge of
standard libraries or special language features. Students may use the language of their choice since the
correctness of a solution is judged by checking that it produces correct output for a range of hidden test
cases.

9. Communication Skills

Oral skills are assessed with a report on a final project in CMSC 345 (Mobile Device Application
Development). This course was taught face-to-face until 2022, after which we started offering it
asynchronously online instead since it also serves as an elective for students in the Applied Computer
Science program. Most of the students, however, are Computer Science majors, and only their presentations
are used for assessment. The reports are now given in recorded video format, but the same criteria used for
face-to-face presentations apply just as well in the new format.

Written communication skills are assessed using a written report due in CMSC 480 (Software Engineering).

10. Ethics Assessment

This course-embedded assessment is given in CMSC 320 (Computer Ethics, Social Impact, and Security).
Students are given a software engineering scenario and asked to write an analysis of each actor’s
understanding of, and compliance with, professional responsibilities.

11. Senior Exit Survey

We developed an exit survey administered by the department office and taken every spring by graduating
seniors. It allows students to state their perceptions of how well the program has satisfied learning
outcomes and prepared them for graduate school or a position in the computing industry.

12. Alumni Survey

We remain in contact with many of our graduates as they advance in their careers. Sometimes they contact
us with information about an internship or recent job posting at their company. Some stay in touch with one
or more faculty members simply because they enjoyed their time here and the personal connections that

8

they made. Some of our former students have returned to speak in class about their professional
experiences or to serve as a CS panelist for the CU’s annual Career Day. We maintain a list of all such
contacts and send email to them every three years with a link to a survey in order to measure how
successfully we meet our Program Educational Objectives.

13. Advisory Board Survey

Our advisory board has been inactive since at least 2018. We are currently working to reconstitute it, and the
following members have volunteered to serve.

• Len Kalechitz, class of 2001, founder and owner, Software Development Firm, LLC

• Colin Henry, class of 2004, Director of Software Engineering, Telly, Inc.

• Dan Polenik, class of 2014, Principal Software Engineer, Comcast, Inc.

• Brian Gorrie, class of 2018, Senior Software Engineer, Lockheed Martin, Inc.

• Brett Logan, class of 2018, Technical Team Lead, GitHub Expert Services

Rubrics and Surveys

The rubrics and surveys described in the previous section are included in successive pages following this one.

Contents:

1. C++ Rubric
2. Java Rubric
3. Database Rubric
4. ADT and Runtime Analysis Rubric
5. Oral Communications Rubric
6. Written Communications Rubric
7. Ethics Rubric
8. Senior Exit Survey
9. Alumni Survey
10. Advisory Board Survey

9

C++ Assessment Rubric

 Unsatisfactory

1
Marginal

2
Good

3
Excellent

4
Score

Pointers,
operations on
linked data
structures,
memory
management

Little or no
demonstrated
understanding of how
to perform dynamic
memory allocation or
manipulate pointers.

Missing or incorrect
functions and/or
obvious errors that
may cause memory
leaks.

Subtle errors that could
cause memory leaks but
all functions are
implemented and
operationally correct.

No potential memory leaks.
Destructor, copy
constructor, and
assignment operator
implemented correctly.

STL iterators
and sorting
algorithms

STL is not used.

An STL vector and
indexing is used
instead of the
required list class.

An STL list and an
iterator are used with at
most minor errors.

An STL list and iterator are
used correctly and the list
of objects is sorted
properly.

File I/O
Does not read any
information from the
input file.

Does not use C++
stream objects for file
I/O, crashes, and/or
does not read and
store all the data in
the file.

Uses C++ stream
objects for file I/O,
successfully reads and
stores all the data in the
file.

Uses C++ stream objects
for file I/O, successfully
reads and stores all the
data in the file, using the
most appropriate kind of
loop, and closes the file.

Operator
overloading
(and
complexity
requirement
for operator+)

Little or no
demonstrated
understanding of how
to overload operators
and/or invoke them.

Significant gaps in
knowledge of how to
overload operators
and/or invoke them.
Operator+ does not
meet complexity
requirement.

Operator overloading is
generally correct, but
complexity requirement
for operator+ is not
met.

Required operators are
correctly overloaded, and
complexity requirement for
operator+ is met.

Templates
No attempt to
implement a class
template.

Major errors in class
template, e.g., a
member function is
not templatized.

No major errors. Class
template can be
instantiated and is
functional.

No errors. Complies with
coding conventions.

General OOP
principles

Incorrect parameter
and return value types,
global variables or
other details that
subvert the idea of
information hiding,
incorrect use of const.

Interface lacks
cohesion. No
understanding of
when/why to declare
references and
methods const.
Member functions not
focused on their
particular
responsibilities.

Public interface
contains one or two
member functions not
related to the concept
represented by the
class. Member
functions or references
not consistently
declared const when
they should be.

Parameters and return
values are declared with
appropriate types. Const is
used where appropriate.
No global variables or other
hacks to violate
information hiding. Clear
separation of public
interface and private
implementation. Cohesive
public interface.

Clarity

Significant deviations
from coding standards
throughout. Many
parts of the code are
undocumented, overly
complex, and/or
cannot be understood
without judgment or
guesswork.

Significant deviations
from coding
standards. The code is
disorganized or poorly
documented, and
difficult to understand
in places.

Code is generally easy
to read, but in some
cases insufficient
documentation,
inconsistent
indentation, cluttered
or overly complicated
code, or other minor
deviations from coding
standards.

The code is professionally
written: neatly organized,
easy to read and
understand, with correct
indentation, reasonable
choices for identifiers, and
internal documentation to
explain non-obvious details
of the logic or its
implementation.

TOTAL

Student:

Evaluator:

10

Java Assessment Rubric

 Unsatisfactory
1

Marginal
2

Good
3

Excellent
4

Score

Implementing
Interfaces

No attempt to
implement the
Comparable interface

Incorrectly implemented
the Comparable
interface

The Comparable
interface is
implemented
correctly in most
instances and
classes.

The Comparable
interface is
implemented
correctly in all the
appropriate
classes.

Object-
Oriented
Design

Difficult to follow
design.

Some good design
elements, but many
design problems are
evident.

Reasonable class
design, but some
design problems
are evident.

Excellent class
design throughout
the entire project.

Generic Class
Design

No attempt to use
generic types.

Generic types are used,
but there are many
problems with their
specifications and
implementations.

Generic types are
used correctly in
most cases.

Generic types are
used correctly in all
cases.

Coding Style

Code is difficult to read
and understand due in
part to major violations
of standards for coding
good style.

Code is generally
readable but violates
many standards for
good coding style.

Complies with
most standards for
good coding style.

Consistently
complies with all
standards for good
coding style.

JavaDoc

Minimal
documentation, or
most methods are not
correctly documented.

Many methods are not
correctly documented.

Most methods are
documented
correctly and
completely.

Each method and
class has an
appropriate doc
comment with
block tags as
needed.

Code Code does not execute.

Code executes, but
many implemented
methods do not
perform correctly.

Most implemented
methods perform
correctly.

The program works
correctly and all
methods are
implemented
correctly.

Problem
Solution

Many program
requirements are not
completed.

Most requirements are
completed, but few are
correct.

Most requirements
are completed
correctly.

All requirements
are completed
correctly and the
program is user
friendly.

 TOTAL

Student:

Evaluator:

11

Database Assessment Rubric

 Unsatisfactory
1

Marginal
2

Good
3

Excellent
4

Score

Database
Design

Table structure is
difficult to follow. Not
all required
information is
represented.

All required
information is
represented, but
the table structure
is poorly designed.

Table structure is
appropriate and all
required
information is
represented.

Table structure is
well designed and
all required
information is
represented.
Tables have a
primary key.

Table
Creation
Statements

SQL code to create
the tables is mostly
incorrect or poorly
designed.

Some SQL code to
create the tables is
correct, but many
items are incorrect
or poorly designed.

Most SQL code to
create the tables is
correct, but one or
two columns are
of the wrong type.

All SQL code to
create the tables is
correct.

Insert
Statements

SQL code to insert
data into the tables is
mostly incorrect or
poorly designed.

Some SQL code to
insert data into the
tables is correct,
but many items are
incorrect or poorly
designed.

Most SQL code to
insert data into
the tables is
correct, but one or
two columns are
of the wrong type.

All SQL code to
insert data into the
tables is correct.

Other SQL
Code

Most code does not
execute correctly.

Some of the SQL
statements execute
correctly, but many
methods do not
perform correctly.

Most
implemented
methods perform
correctly.

The entire
program is correct.
All methods are
implemented
correctly.

Reports
Most reports are
poorly designed and
unsatisfactory.

Many reports are
poorly designed
and unsatisfactory.

Virtually all
reports are well
designed and
implemented.

All reports are well
designed and
implemented.

Problem
Solution

Many solution
requirements are not
completed.

Most requirements
are completed.

Solution is well
done with only a
few minor issues.

All requirements
are completed.
Project is easy to
use and
understand.

TOTAL

Student:

Evaluator:

12

ADT and Runtime Analysis Assessment Rubric

 Unsatisfactory
1

Marginal
2

Good
3

Excellent
4

Score

Analysis of Iterative Algorithms

0 - 35%
correct

36 - 60%
correct

61 - 85%
correct

86 - 100%
correct

Analysis of Recursive Algorithms

Application of Critical Thinking to
Choosing Appropriate ADTs, Data
Structures, and Algorithms

TOTAL

Evaluator:

Student:

13

Oral Communication Assessment Rubric

Speaker: Evaluator:

Topic: Date:

Evaluation scale:

• 4 = Excellent

• 3 = Good

• 2 = Marginal

• 1 = Unsatisfactory

Presentation Style

Content

Weighted Total /100

Evaluator:

Date:

 Score Weight Total

Personal appearance was appropriate. 1

Maintained eye contact with audience. 1

Used audience-appropriate vocabulary. 1

Paced the presentation appropriately. 1

Used engaging vocalizations. 2

Maintained audience interest. 2

Spoke clearly, confidently, and with sufficient volume. 2

Smooth transitions between topics with limited use of “ums” and other filler words. 2

 Score Weight Total

Presentation includes introduction, body, and conclusion. 3

Content is logically organized. 3

Visual aids and/or presentation materials enhance the presentation. 3

Demonstrates subject knowledge and responds effectively to questions. 4

14

Written Communication Assessment Rubric

 Unsatisfactory
1

Marginal
2

Good
3

Excellent
4

Score

Grammar
and spelling

Many sentences
have grammar or
spelling errors.

Most paragraphs
have a grammar or
spelling error.

Most paragraphs
have no grammar or
spelling errors.

The entire work has
at most a couple of
grammar or spelling
errors.

Sentence
structure

Run on and awkward
sentences occur in
most paragraphs.

Some run on and
awkward sentences
are present.
Sentence structure
varies little.

Very few run-on and
awkward sentences
are present.
Sentence structure is
usually varied
appropriately.

No run on or
awkward sentences.
Sentence structure
is varied
appropriately.

Paragraph
structure

Most paragraphs are
incoherent.

Some paragraphs are
structured
appropriately.

Most paragraphs are
structured and
obviously coherent.

Every paragraph is
begun, developed
and concluded
appropriately.

Composition
structure

Ideas appear
haphazardly or
incompletely.
Relationships among
ideas are not
evident.

Ideas are present
but often unrelated.
Main points are not
evident. Pacing
uneven.

Main points are
evident and usually
related in a logical
fashion. Introduction
and conclusion are
present.

The subject is
introduced and main
points developed.
Conclusions follow
from main points.

 TOTAL

Student:

Evaluator:

Date:

15

Computer Ethics Assessment Rubric

 Unsatisfactory
1

Marginal
2

Good
3

Excellent
4

Score

Ethical
Arguments

Ethical arguments
do not match the
ethical system.

Ethical arguments are
appropriate for the
ethical system,
however the
reasoning skills
demonstrated are
weak or incomplete.

Almost all ethical
arguments
demonstrate strong
reasoning skills in the
ethical system.
Arguments are
mostly complete.

Ethical arguments
demonstrate strong
reasoning skills in
the ethical system.
All arguments are
complete and
concise.

Primary actors
are identified in
the professional
ethics scenarios.

Little or no
identification of
primary actors is
completed.

Some primary actors
are correctly
identified.

Most primary actors
are correctly
identified.

All primary actors
are correctly
identified.

Professional
responsibilities
are identified in
professional
ethics scenarios.

Few or no
professional
responsibilities are
identified.

Some professional
responsibilities are
identified, but many
are missed or too
many actors are
listed.

Most professional
responsibilities are
correctly identified,
with few superfluous
responsibilities listed.

All professional
responsibilities are
correctly identified,
without superfluous
responsibilities
listed.

Ethical resolution
of the scenario is
identified.

Little or no
judgment has been
made as to ethical
resolution of the
scenario

Some judgments are
made as to as to the
correct ethical
resolution of the
scenario. Little or no
justification for
judgments is present.

Mostly correct
judgments are made
as to as to the correct
ethical resolution of
the scenario. Most
judgments are
supported by valid
reasoning.

Completely correct
judgments are made
as to as to the
correct ethical
resolution of the
scenario. All
judgments are
supported by valid
reasoning.

 TOTAL

Student:

Evaluator:

Date:

16

Senior Exit Survey

Name:

Year of graduation:

Permanent email address (optional):

1. Are you currently seeking employment?

2. Have you been offered a full-time position but not yet accepted? If so, could you briefly describe the options
you are considering?

3. Have you accepted a full-time position? If yes:

• What is the job title?

• Who is the employer?

• Please share with us any experiences as a CS major that were especially important in your being hired.
This could be a particular course (or courses) that you took, particular skills developed or concepts
covered in the curriculum, an internship or other employement experience, or anything else that you
did or learned as a CS major that made you a good candidate for the position.

4. Have you been accepted to a graduate school program? If so, will you be pursuing a Masters degree or a
Doctorate? Please tell us name of the program and the school.

5. Having completed our CS program, how prepared do you feel for your next step?

• Very prepared

• Reasonably well prepared

• Somewhat prepared

• Poorly prepared

If you feel less than reasonably well prepared for your next step, please tell us why.

6. Please check the box to indicate how prepared you feel in the following areas.

 Poor Satisfactory Good Excellent

Java programming skills

C++ programming skills

Object-oriented programming in general

Ability to write a significant database application

Understanding of computer hardware concepts

Understanding of data structures and algorithms

Knowledge of operating system concepts

General problem-solving skills

Proficiency in oral and written communication

Understanding of ethical issues related to computing

Knowledge of software design processes and methodologies

17

7. Describe what you liked most about the CS program?

8. Describe what you liked least about the CS program?

9. Do you have any suggestions for how the program could better serve its students?

10. Do you have any additional comments about the CS program at Bloomsburg or your experiences as a CS major?

18

Alumni Survey

Name:
Date:
Year of graduation:

The first seven questions assume that you are currently employed in the computing field. If this is not the case,
please proceed to Question 8.

1. Who is your current employer?

2. What is your current job title?

3. Please summarize your current professional responsibilities. We are especially interested in hearing about any
leadership roles that you may hold.

4. Does your position require the ability to communicate and collaborate effectively in a team environment? If
so, how well did your experience as a computer science major help prepare you for this aspect of your career?

5. From your current perspective as a computing professional, how would you rate your overall level of
preparation for a career in computing at the time of your graduation?

• 1 = Poor

• 2 = Adequate

• 3 = Good

• 4 = Excellent

6. If you answered 1 or 2 for the previous question, please explain.

7. We would like to know how well the computer science major prepared you in the areas listed below for entry-
level responsibilities in your position. Select N/A if you cannot judge or an area is not relevant to your position.

 N/A Poor Adequate Good Excellent

Java programming

C++ programming

Database design and implementation

Data structures and algorithms

Operating systems

Software engineering

Problem-solving

Oral communication

Written communication

Leadership skills

Ability to adapt to new technologies

Ability to work in a team environment

19

8. If you are currently in graduate school or have completed a graduate degree, please tell us about it:

Degree:

Program:

School:

 Date (or expected date) of completion:

9. We welcome any comments you may have about the computer science program at CU - Bloomsburg and/or
suggestions for the improvement of the program

20

Advisory Board Survey

Name:

Title/Position:

Company/Employer:

One of the requirements for our ABET-accredited CS program is to periodically assess our Program Educational
Objectives (PEOs) and Student Outcomes (SOs). PEOs are broad statements describing what graduates are
expected to attain within a few years after graduation. They are based on the needs of the program’s
constituencies. Most of our graduates enter into some form of software development, making the software
industry our primary constituency. SOs describe what students are expected to know and be able to do at the
time of graduation.

Please review our PEOs and SOs here, and then answer the following two questions.

1. From your perspective as a computing professional, are our PEOs clear, sufficient, and appropriate to meet the
needs of our constituents? Is there anything you would change or add?

2. How well do you think our Student Outcomes support the PEOs? Considering recent trends in software
development and other areas of computing, would you recommend any changes or additions to our SOs?

Please take a look at our Degree Checklist here in order to answer the next question.

3. Do you think the required and elective courses align with our SOs and with the general needs of the software
industry? Are there areas within the curriculum that you believe deserve extra emphasis, areas not optimally
covered for today’s needs, or areas that receive more emphasis than is justified by today’s needs?

4. Finally, we welcome any general comments and/or suggestions you may have for the improvement of our
computer science program.

Thank you for your time.

https://www.bloomu.edu/documents/cs-peos-and-sos
https://www.bloomu.edu/documents/cs-degree-checklist

